
Chapter-3
     Greedy Method

3.1 Greedy Technique Definition

          Constructs a solution to an optimization problem piece by piece through a sequence of 
choices that are: feasible, i.e. satisfying the constraints locally optimal (with respect to some 
neighborhood  definition)  greedy (in  terms  of  some  measure),  and  irrevocable.  For  some 
problems, it yields a globally optimal solution for every instance. For most, does not but can 
be useful for fast approximations. We are mostly interested in the former case in this class. 

Generic Algorithm

Algorithm Greedy(a,n) 
{
//a[1..n] contains the n inputs. 

solution:= ∅;
For i:= 1to n do 
{ 
X=select(a);
If Feasible(solution , x) then 
solution:= union(solution, x);
}
return solution; 
}
Applications of the Greedy Strategy



Optimal solutions:

• change making for “normal” coin denominations

• minimum spanning tree (MST)

• single-source shortest paths

• simple scheduling problems

• Huffman codes

Approximations/heuristics:

• Traveling salesman problem (TSP)

• knapsack problem

• other combinatorial optimization problems 

Change-Making Problem:
Given unlimited amounts of coins of denominations d1 > … > dm, give change for amount n 
with the least number of coins
Example:  d1 = 25c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c

Greedy solution:
 Greedy solution is Optimal for any amount and “normal’’ set of denominations 
Ex: Prove the greedy algorithm is optimal for the above denominations. It may not be optimal 

for arbitrary coin denominations.
3.2 The Fractional Knapsack Problem
Given a set S of n items, with each item i having bi - a positive benefit wi - a positive weight 
our goal is to Choose items with maximum total benefit but with weight at most W. If we are 
allowed to take fractional amounts, then this is the  fractional knapsack problem. In this 
case, we let xi denote the amount we take of item i 
    Objective:   maximize
             
    Constraint:

Algorithm for greedy strategy for knapsack problem:

Algorithm GreedyKnapsack(m,n) 

//p[1:n] and w[1:n] contain profits and weights respectively of n objects ordered such that 
//p[i]/w[i] >=p[i+1]/w[i+1].m is the knapsack size and x[1:n] is the solution vector  
{
For i:= 1 to n do x[i]:=0.0; //initialize x
U:=m;

∑
∈Si

iii wxb )/(

∑
∈

≤
Si

i Wx



{
If (w[i]>U) then break;
x[i]:=1.0; U:=U-w[i];
}
If (i<=n) then x[i]:=U/w[i];
}
Example model-1

In this model items are arranged by their values, maximum selected first, process continuous 
till minimum value. Here given  a set S of n items, with each item i having bi - a positive 
benefit wi - a positive weight here our goal is to Choose items with maximum total benefit 
but with weight at most W.
Items:

         Weight:   4 ml            8 ml                2 ml               6 ml             1 ml
Benefit:   Rs.12                  Rs.32               Rs.40         Rs.30            Rs.50 
Value:        3                           4                     20                5              50

(Rs. per ml)

Knapsack Problem model-2

In  this  model  items  are  arranged by their  weights,  lightest  weight  selected  first,  process 
continuous till  the maximum weight. You have a knapsack that has capacity (weight) and 
You have several items I1,…,In..Each item Ij has a weight wj and a benefit bj.You want to 
place a certain number of copies of each item Ij in the knapsack so that:

i)The knapsack weight capacity is not exceeded and

ii)The total benefit is maximal.



Example

f (0), f(1)
f (0) = 0. Why?  The knapsack with capacity 0 can have nothing in it.
f (1) = 0.  There is no item with weight 1.   
f (2)
f (2) = 60.  There is only one item with weight 60.then choose A.
f (3)
f(3) = MAX {bj + f(w-wj) | Ij is an item}.
= MAX {60+f (3-2), 75 + f (3-3)}
= MAX {60 + 0, 75 + 0}
= 75 then Choose B.
F (4)
F (4) = MAX {bj + f (w-wj) | Ij is an item}.
= MAX {60 + f (4-2), 75 + f (4-3), 90+f (4-4)}
= MAX {60 + 60, 75 + f (1), 90 + f (0)}
= MAX {120, 75, 90}
=120. Then choose A
F (5)
F (5) = MAX {bj + f(w-wj) | Ij is an item}.
= MAX {60 + f (5-2), 75 + f (5-3), 90+f (5-4)}

Item Weight Benefit

A 2 60

B 3 75

C 4 90



= MAX {60 + f (3), 75 + f (2), 90 + f (1)}
= MAX {60 + 75, 75 + 60, 90+0}
= 135. Then choose A or B.

Result
Optimal knapsack weight is 135. There are two possible optimal solutions: 
Choose A during computation of f (5). 
Choose B in computation of f (3).
Choose B during computation of f (5).
Choose A in computation of f (2).
Both solutions coincide. Take A and B.

Procedure to solve the knapsack problem

It is Much easier for item Ij, let rj = bj/ wj. This gives you the benefit per measure of weight 
and then Sort the items in descending order of rj  .Pack the knapsack by putting as many of 
each item as you can walking down the sorted list.

Example model-3

 I=<I1,I2,I3,I4,I5> W=<5,10,20,30,40> V=<30,20,100,90,160> knapsack capacity W=60, the 
solution to the fractional knapsack problem is given as:
Initially

Taking value per weight ratio 

Item wi vi Pi=vi/wi 

I1 5 30 6.0 

I2 10 20 2.0 

I3 20 100 5.0 

I4 30 90 3.0 

I5 40 160 4.0 

Item Wi Vi 

I1 5 30 

I2 10 20 

I3 20 100 

I4 30 90 

I5 40 160 



Arranging item with decreasing order of Pi

Item wi vi Pi=vi/wi 

I1 5 30 6.0 

I2 20 100 5.0 

I3 40 160 4.0 

I4 30 90 3.0 

I5 10 20 2.0 

Filling  knapsack  according  to  decreasing  value  of  Pi,  max.  value  =  v1+v2+new 
(v3)=30+100+140=270

3.3 Greedy  Method – Job Sequencing Problem

Job sequencing  with  deadlines  the  problem is  stated  as  below.   There  are  n  jobs  to  be 
processed on a machine. Each job i has a deadline di  ≥ 0 and profit pi≥0. Pi is earned iff the 
job is completed by its deadline. The job is completed if it is processed on a machine for unit 
time. Only one machine is available for processing jobs. Only one job is processed at a time 
on the machine.
A given Input set of jobs 1,2,3,4 have sub sets 2n  so 24    =16

It can be written as {1},{2},{3},{4},{Ø},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},
{1,2,4},{2,3,4},{1,2,3,4},{1,3,4} total of 16 subsets 

Problem:
n=4 , P=(70,12,18,35) , d=(2,1,2,1)

Feasible           Processing           Profit value                       Time Line
Solution Sequence                                                   0             1            2
  1                                1                      70
   2                               2                      12
   3                               3                      18
   4                               4                      35
 1,2                            2,1                     82
1,3                          1,3 /3,1                 88  
1,4                            4,1                    105
2,3                          3,2 /2,3                30
3,4                          4,3/3,4                 53



We should consider the pair  i,j  where di  <=dj  if  di>dj  we should not consider  pair  then 
reverse the order. We discard pair (2, 4) because both having same dead line(1,1) and cannot 
process same. Time and discarded pairs (1,2,3), (2,3,4), (1,2,4)…etc since processes are not 
completed within their deadlines. A feasible solution is a subset of jobs J such that each job is 
completed by its deadline. An optimal solution is a feasible solution with maximum profit 
value.

Example 
 Let n = 4, (p1,p2,p3,p4) = (100,10,15,27), (d1,d2,d3,d4) = (2,1,2,1)

Sr.No.   Feasible Processing Profit value
             Solution Sequence
(i)  (1, 2) (2, 1) 110
(ii)  (1, 3)      (1, 3) or (3, 1)         115
(iii)  (1, 4) (4, 1) 127 is the optimal one
(iv)  (2, 3) (2, 3) 25
(v)  (3, 4) (4, 3) 42
(vi)   (1) (1) 100
(vii)   (2) (2) 10
(viii)   (3) (3) 15
(ix)   (4) (4) 27

Problem:  n jobs, S = {1, 2… n}, each job i has a deadline di ≥  0 and a profit pi ≥  0. We need 
one unit of time to process each job and we can do at most one job each time. We can earn 
the profit pi if job i is completed by its deadline.
The optimal solution = {1, 2, 4}.
The total profit = 20 + 15 + 5 = 40. 

Algorithm
Step 1: Sort pi into non-increasing order. 

After sorting p1 ≥  p2 ≥  p3 ≥  … ≥  pi.
Step 2: Add the next job i to the solution set if i can be completed by its deadline. Assign i to 

time slot [r-1, r], where r is the largest integer such that 1 ≤  r ≤  di and [r-1, r] is free.
Step 3: Stop if all jobs are examined. Otherwise, go to step 2.
Time complexity: O (n2)
Example

I pi di

1 20 2 assign to [1, 2]

2 15 2 assign to [0, 1]

3 10 1 Reject

i 1 2 3 4 5

pi 20 15 10 5 1

di 2 2 1 3 3



4 5 3 assign to [2, 3]

5 1 3 Reject

solution = {1, 2, 4}
total profit = 20 + 15 + 5 = 40

Greedy Algorithm to Obtain an Optimal Solution
Consider the jobs in the non increasing order of profits  subject to the constraint  that  the 
resulting job sequence J is a feasible solution.
In the example considered before, the non-increasing profit vector is 
(100   27    15    10)         (2    1    2    1)    
 p1       p4       p3    p2               d1 d4   d3 d2

J = {1} is a feasible one
J = {1, 4} is a feasible one with processing sequence 
J = {1, 3, 4} is not feasible 
J = {1, 2, 4} is not feasible 
J = {1, 4} is optimal

High level description of job sequencing algorithm
Procedure greedy job (D, J, n)
// J is the set of n jobs to be completed by their deadlines  
{  
J:={1}; 
    for i:=2 to n do 
    {
        if  (all jobs in J U{i} can be completed by their deadlines) 

       then J:= ß J U {i};
    }
}

Greedy Algorithm for Sequencing unit time jobs

Procedure JS(d,j,n)

// d(i) ≥  1, 1≤  i ≤  n are the deadlines, n ≥ 1. The jobs are ordered such that

//  p1  ≥  p2  ≥  …….  ≥  pn  .J[i] is the ith job  in the optimal solution ,  i  ≤  i  ≤  k. Also, at 

termination d[J[i] ]≤ d [J[i+1]] ,1 ≤  i ≤  k 

{

d[0]:=J[0]:=0; //initialize and J(0) is a fictious job with d(0) = 0 //

J[1]:=1; //include job 1

K:=1; // job one is inserted into J //



for i :=2 to n do // consider jobs in non increasing order of pi //

r:=k;

While ((d[J[r]]>d[i]) and (d[J[r]]#r)) do r:=r-1;

If ((d[J[r] ≤  d[i]) and d[i]>r)) then { //insert i into J[]

For q:=k to (r+1) step-1 do j[q+1]:=j[q];

J[r+1]:=i; k:=k+1;

} } return k;  

} 

3.4 Minimum Cost Spanning Trees 

Spanning trees

Suppose you have a connected undirected graph
     -Connected: every node is reachable from every other node
     -Undirected: edges do not have an associated direction 
Then a spanning tree of the graph is a connected subgraph in which there are no cycles 

Finding a spanning tree:

To find a spanning tree of a graph, pick an initial node and call it part of the spanning tree do 
a search from the initial node: each time you find a node that is not in the spanning tree, add 
to the spanning tree both the new node and the edge you followed to get to it .



Minimizing costs

Suppose you want to supply a set of houses (say, in a new subdivision) with:
– electric power
– water
– sewage lines
– telephone lines 

To keep costs down, you could connect these houses with a spanning tree (of, for example, 
power lines) However, the houses are not all  equal distances apart.  To reduce costs even 
further, you could connect the houses with a minimum-cost spanning tree.

Minimum-cost spanning trees

Suppose you have a connected undirected graph with a weight (or cost) associated with each 
edge. The cost of a spanning tree would be the sum of the costs of its edges. A minimum-cost 
spanning tree is a spanning tree that has the lowest cost.

 

3.5 Greedy Approach for Prim’s and kruskal’s algorithm:

Both Prim’s and Kruskal’s algorithms are greedy algorithms. The greedy approach works for 
the MST problem; however, it does not work for many other problems.



Prim’s algorithm:

T = a spanning tree containing a single node s;
E = set of edges adjacent to s;
while T does not contain all the nodes 
{
   remove an edge (v, w) of lowest cost from E
   if w is already in T then discard edge (v, w)
   else
 {
   add edge (v, w) and node w to T
    add to E the edges adjacent to w
  }
} 

An edge of lowest cost can be found with a priority queue. Testing for a cycle is automatic

Prim’s Algorithm:

Initialization
a. Pick a vertex r to be the root

 b. Set D(r) = 0, parent(r) = null 

c. For all vertices v ∈ V, v ≠  r, set D (v) = ∞ 
d. Insert all vertices into priority queue P, 
    using distances as the keys



The MST initially consists of the vertex  e,  and we update the distances and parent for its 
adjacent vertices.



Final Spanning tree

Running time of Prim’s algorithm (without heaps):

1. Initialization of priority queue (array): O (|V|)
2. Update loop:  |V| calls

– Choosing vertex with minimum cost edge: O(|V|)
– Updating  distance  values  of  unconnected  vertices:  each  edge is  considered 

only once during entire execution, for a total of O(|E|) updates 

3. Overall cost without heaps:

Minimum-cost Spanning Trees
Example of MCST: Finding a spanning tree of G with minimum cost



Prim’s Algorithm Invariant:

At each step, we add the edge (u,v) s.t. the weight of (u,v) is minimum among all edges where 
u is in the tree and v is not in the tree. Each step maintains a minimum spanning tree of the 
vertices that have been included thus far. When all vertices have been included, we have a 
MST for the graph.

Another Approach:
Create a forest of trees from the vertices. Repeatedly merge trees by adding “safe edges” until 
only one tree remains. A “safe edge” is an edge of minimum weight which does not create a 
cycle.

Kruskal’s algorithm:

 T = empty spanning tree;

E = set of edges;

N = number of nodes in graph;

 while T has fewer than N - 1 edges {

 remove an edge (v, w) of lowest cost from E



 if adding (v, w) to T would create a cycle

 then discard (v, w)

 else add (v, w) to T

 } 

Finding an edge of lowest cost can be done just by sorting the edges
Running time bounded by sorting (or findMin)
O(|E|log|E|), or equivalently, O(|E| log|V|)

Initialization

a. Create a set for each vertex v ∈ V
b. Initialize the set of “safe edges” A comprising the MST to the empty set
c. Sort edges by increasing weight



Kruskal’s algorithm Invariant

After each iteration, every tree in the forest is a MST of the vertices it connects. Algorithm 
terminates when all vertices are connected into one tree.

3.6 Optimal Merge Patterns

Problem
Given n sorted files, find an optimal way (i.e., requiring the fewest comparisons or record 
moves) to pair wise merge them into one sorted file. It fits ordering paradigm.
Example

Three sorted files (x1, x2, x3) with lengths (30, 20, 10)

Solution 1: merging x1 and x2 (50 record moves), merging the result with   x3 (60 moves) à 

total 110 moves

Solution 2: merging x2 and x3 (30 moves), merging the result with x1 (60 moves) à total 90 
moves

The solution 2 is better.
A greedy method (for 2-way merge problem)
At each step, merge the two smallest files. e.g., five files with lengths (20, 30, 10, 5, 30).



Total number of record moves = weighted external path length
The optimal 2-way merge pattern = binary merge tree with minimum weighted external path 
length
Algorithm
  struct treenode
 {
         struct treenode *lchild, *rchild;
         int weight;
  };
  typedef struct treenode Type;
  Type *Tree(int n)
  //     list is a global list of n single node
  //     binary trees as described above.
  {
         for (int i=1; i<n; i++) {
              Type *pt = new Type;
              // Get a new tree node.
              pt -> lchild = Least(list); // Merge two trees with
              pt -> rchild = Least(list); // smallest lengths.
              pt -> weight = (pt->lchild)->weight
                        + (pt->rchild)->weight;
              Insert(list, *pt);
        }
        return (Least(list)); // Tree left in l is the merge tree.
 } 
Example



Time Complexity

If list is kept in non-decreasing order: O (n2)
If list is represented as a min heap: O (n log n)
3.7 Optimal Storage on Tapes



There are n programs that are to be stored on a computer tape of length L. Associated with 
each program i is  a length Li.  Assume the tape is  initially positioned at  the front.  If  the 
programs are stored in the order I = i1, i2… in, the time tj needed to retrieve program ij

                         
   tj = 

If all programs are retrieved equally often, then the mean retrieval time (MRT) =this problem 
fits the ordering paradigm. Minimizing the MRT is equivalent to minimizing

D (I) =

 Example
 n=3 (l1, l2, l3) = (5, 10, 3) 3! =6 total combinations
    L1    l2         l3         = l1+ (l1+l2) + (l1+l2+l3) = 5+15+18 = 38/3=12.6
                                                   n                              3
     L1    l3         l2         = l1 + (l1+l3) + (l1+l2+l3) = 5+8+18 = 31/3=10.3
                                                   n                              3
     L2    l1         l3         = l2 + (l2+l1) + ( l2+l1+l3)  = 10+15+18  = 43/3=14.3
                                                      n                          3
     L2    l3         l1         = 10+13+18 = 41/3=13.6
                                               3   
     L3    l1         l2         = 3+8+18 = 29/3=9.6 min
                                               3   
     L3    l2         l1         = 3+13+18 = 34/3=11.3 min
                                              3 permutations at (3, 1, 2)

 Example
 n = 4, (p1, p2, p3, p4) = (100, 10, 1 5, 27)   (d1, d2, d3, d4) = (2, 1, 2, 1) 

Feasible solution Processing sequence value

1 (1,2) 2,1 110

2 (1,3) 1,3 or 3, 1 115

3 (1,4) 4, 1 127

4 (2,3) 2, 3 25

5 (3,4) 4,3 42

6 (1) 1 100

7 (2) 2 10

8 (3) 3 15

∑
=

j

1k
ik

L ∑
=

n

1j
jt

n

1

∑∑
= =

n

1j

j

1k
ik

L



9 (4) 4 27

Example

Let n = 3, (L1, L2, L3) = (5, 10, 3). 6 possible orderings. The optimal is 3, 1, 2

Ordering I d(I)

1,2,3 5+5+10+5+10+3   = 38

1,3,2 5+5+3+5+3+10     = 31

2,1,3 10+10+5+10+5+3 = 43

2,3,1 10+10+3+10+3+5 = 41

3,1,2 3+3+5+3+5+10     = 29

3,2,1, 3+3+10+3+10+5   = 34

3.8 TVSP (Tree Vertex Splitting Problem)

Let T= (V, E, W) be a directed tree. A weighted tree can be used to model a distribution 
network in which electrical signals are transmitted.  Nodes in the tree correspond to receiving 
stations & edges correspond to transmission lines. In the process of transmission some loss is 
occurred. Each edge in the tree is labeled with the loss that occurs in traversing that edge. The 
network model may not able tolerate losses beyond a certain level. In places where the loss 
exceeds the tolerance value boosters have to be placed. Given a networks and tolerance value, 
the TVSP problem is to determine an optimal placement of boosters. The boosters can only 
placed at the nodes of the tree.     
            
 d (u) = Max { d(v) + w(Parent(u), u)}
                    d(u) – delay of node          v-set of all edges & v belongs to child(u)
                     δ tolerance value

TVSP (Tree Vertex Splitting Problem)



If d (u)>= δ  than place the booster.
d (7)= max{0+w(4,7)}=1
d (8)=max{0+w(4,8)}=4
d (9)= max{0+ w(6,9)}=2
d (10)= max{0+w(6,10)}=3     d(5)=max{0+e(3.3)}=1
d (4)= max{1+w(2,4), 4+w(2,4)}=max{1+2,4+3}=6> δ ->booster
d (6)=max{2+w(3,6),3+w(3,6)}=max{2+3,3+3}=6> δ->booster
d (2)=max{6+w(1,2)}=max{6+4)=10> δ->booster
d (3)=max{1+w(1,3), 6+w(1,3)}=max{3,8}=8> δ ->booster
Note:  No  need  to  find  tolerance  value  for  node  1  because  from  source  only  power  is 
transmitting.

3.9 Single-source Shortest Paths

Let G=(V,E) be a directed graph and a main function is C(e)(c=cost, e=edge) for the edges of 
graph ‘G’  and a source vertex it will represented with V0   the vertices represents cities and 
weights represents distance between 2 cities. The objective of the problem find shortest path 
from source to destination. The length of path is defined to be sum of weights of edges on the 
path. S[i] =T if vertex i present in set‘s’. S[i] =F if vertex i is not present in set‘s’

Formula
Min {distance[w],distance[u]+cost[u, w]}

 u-recently visited node  w-unvisited node 
Step-1  s[1]

s[1]=T        dist[2]=10
s[2]=F        dist[3]=α 
s[3]=F         dist[4]= α 
s[4]=F         dist[5]= α 
s[5]=F         dist[6]= 30
s[6]=F         dist[7]= α 
S[7]=F



Step-2  s[1,2] the visited nodes
W={3,4,5,6,7} unvisited nodes
U={2} recently visited node
s[1]=T        w=3
s[2]=T        dist[3]=α 
s[3]=F         min {dist[w], dist[u]+cost(u, w)}
s[4]=F         min {dist[3], dist[2]+cost(2,3)}
s[5]=F         min{α, 10+20}= 30
s[6]=F         w=4 dist[4]= α 
S[7]=F        min{dist(4),dist(2)+cost(2,4)}
                    min{α,10+ α}= α
W=5 dist[5]= α       min{dist(5),dist(2)+cost(2,5)} 

                                            min{α,10+ α}= α 
W=6 dist[6]=30
Min{dist(6), dist(2)+cost(2,6)}=min{30,10+ α}=30
W=7, dist(7)= α   min{dist(7),dist(2)+cost(2,7)}
min{α,10+ α}= α let min. cost is 30 at both 3 and 6 but 

Recently visited node 2 have only direct way to 3, so consider 3 is min cost node from 2.
Step-3     w=4,5,6,7

s[1]=T    s={1,2,3} w=4 ,dist[4]= α 
s[2]=T    min{dist[4],dist[3]+cost(3.4)}=min{α,30+15}=45
s[3]=T    w=5, dist[5]= α min{dist(5), dist(3)+cost(3,5)}
s[4]=F    min{α,30+5}=35 similarity we obtain 
s[5]=F    w=6, dist(6)=30   w=7 ,dist[7]= α so min cost is 30 at w=6 but  
s[6]=F    no path from 3 so we consider 5 node so visited nodes 1,2,3, 5
S[7]=F

Step-4   w=4,6,7   s={1,2,3,5}
s[1]=T   w=4, dist[4]=45 min {dist[4], dist[5]+cost(5,4)}
s[2]=T                              min{45,35+ α}=45
s[3]=T   w=6,dist[6]=30 min{dist[6],dist[5]+cost(5,6)}
s[4]=F                              min{30, 35+ α}=30
s[5]=T   w=7,dist[7]= α min{dist[7],dist[5]+cost(5,7)}
s[6]=F                             min{α, 35+7}=42 
S[7]=F  here min cost is 30 at 6 node but there is no path from 5 yo 6, so we consider 
7 , 1,2,3,5,7 nodes visited.

Therefore the graph traveled from source to destination
Single source shortest path is drawn in next slide.

Design of greedy algorithm

Building the shortest paths one by one, in non-decreasing order of path lengths

e.g., 1à4: 10

       1à4à5: 25
        …



We need to determine 1) the next vertex to which a shortest path must be generated and 2) a 
shortest path to this vertex.

Notations

S = set of vertices (including v0) to which the shortest paths have already been generated
Dist (w) = length of shortest path starting from v0, going through only those vertices that are 
in S, and ending at w.
Three observations 
If the next shortest path is to vertex u, then the path begins at v0, ends at u, and goes through 
only those vertices that are in  S. The destination of the next path generated must be that of 
vertex u which has the minimum distance, dist (u), among all vertices not in S.
Having selected a vertex u as in observation 2 and generated the shortest v0 to u path, vertex 
u becomes a member of S.

DIJKSTRA’S Shortest Path Algorithm

Procedure SHORT-PATHS (v, cost, Dist, n)
// Dist (j) is the length of the shortest path from v to j in the //graph G with n vertices; Dist 
(v)= 0 //
Boolean S (1:n); real cost (1:n,1:n), Dist (1:n); integer u, v, n, num, i, w 
// S (i) = 0 if i is not in S and s(i) =1 if it is in S//

// cost (i, j) = +α  if edge (i, j) is not there//
// cost (i,j) = 0  if i = j; cost (i, j) = weight of < i, j >  

// for iß1 to do // initialize S to empty

// S(i) ß0; Dist (i)ß cost(v, i) 
Repeat
// initially for no vertex shortest path is available

// S (v)ß1; dist(v)ß0// Put v in set S //

for numß2 to n-1 do // determine n-1 paths from// //vertex v //
choose u such that Dist (u)=min{dist(w)} and S(w)=0 

S (u)ß1 // Put vertex u in S //

Dist (w)ßmin (dist(w),Dist(u) + cost (u, w))
Repeat



repeat
end SHORT - PATHS 
Overall run time of algorithm is O ((n+|E|) log n)

Example:

********
Chapter-4

Dynamic programming

4.1 The General Method
Dynamic Programming: is an algorithm design method that can be used when the solution 
to a problem may be viewed as the result of a sequence of decisions.

The shortest path

To find a shortest path in a multi-stage graph


